DIFFERENT NH₂-TERMINAL FORM WITH 12 ADDITIONAL RESIDUES OF α_2 -PLASMIN INHIBITOR FROM HUMAN PLASMA AND CULTURE MEDIA OF HEP G2 CELLS

Takatoshi Koyama, Yukiya Koike*, Shigeo Toyota, Fuminori Miyagi*,
Naotaka Suzuki* and Nobuo Aoki

The First Department of Internal Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113, Japan
*Biotechnology Research Laboratory, Teijin Limited, Tokyo, Japan

Received February 28, 1994		

SUMMARY: α_2 -Plasmin inhibitor (α_2 PI) was purified from plasma or from the culture media of Hep G2 cells by one-step immunoaffinity chromatography procedure. Majority of α_2 PI purified from plasma was the previously recognized plasma α_2 PI with NH₂-terminal Asn (Asn- α_2 PI), whereas majority of α_2 PI purified from the culture media was retaining the "pro" peptide of 12 amino acids with NH₂-terminal Met (Met- α_2 PI). When Hep G2 cells were cultured in serum-free media, the α_2 PI secreted to the media was totally in a form of Met- α_2 PI. Incubation of Met- α_2 PI with human plasma induced the complete conversion of Met- α_2 PI to Asn- α_2 PI. The results indicate that α_2 PI is synthesized and secreted from liver cells as Met- α_2 PI and Met- α_2 PI is converted to Asn- α_2 PI by proteolytic cleavage in plasma during the circulation.

• 1994 Academic Press, Inc.

We have expressed α_2 -plasmin inhibitor (α_2 PI) in baby hamster kidney (BHK) cells and found that α_2 PI expressed retained a part (12 amino acids) of the leader sequence at the NH₂-terminal end (1). We then suggested that the leader sequence was composed of pre-(signal) peptide of 27 amino acids and propeptide of 12 amino acids (1), and BHK cells may have failed to recognize the Pro-Asn peptide bond between the propeptide and mature α_2 PI although the leader sequence was cleaved by signal peptidase. Subsequently, Bangert et al. (2) and Enghild et al. (3) found that the "pro"-type of α_2 PI ("pro"- α_2 PI) was present in the purified α_2 PI prepared from human blood plasma in an amount of 30-50% of the total α_2 PI. Then, the questions arisen were whether the processing from "pro"- α_2 PI to mature α_2 PI took place in the α_2 PI-producing liver cells or in the circulation or even *in vitro* by degradation of

the protein during the purification procedures. To answer the questions, we have purified $\alpha_2 PI$ from plasma or culture media of $\alpha_2 PI$ -producing human liver cell line Hep G2 (4), and analyzed the NH₂-terminal sequences of these $\alpha_2 PI$ s. For the purification, we used one-step immunoaffinity chromatography procedure (5, 6) instead of multi-step conventional purification procedures (6) to avoid possible *in vitro* degradation of the protein.

MATERIALS AND METHODS

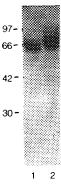
Cell culture. Hep G2 cells were maintained in Dulbecco's modified Eagle's minimal essential medium (GIBCO, Grand Island, NY) containing 10% heat-inactivated fetal calf serum (FCS) (General Scientific Laboratories, CA), 2mM glutamine (GIBCO), 100U/ml penicillin and 100µg/ml streptomycin (GIBCO). Hep G2 cells were also maintained in serum-free medium, ITES-eRDF (insulin 9µg/ml, transferrin 10µg/ml, ethanolamine 10µM, sodium selenite 20nM) (7).

Immunoaffinity purification of human α_2 PI. Venous blood was drawn from a normal volunteer into plastic tubes containing 10% volume of 3.8% sodium citrate and centrifuged to separate plasma. α_2 PI in plasma or in the culture media of Hep G2 cells, was purified by a one-step immunoaffinity chromatography procedure as already described (5). Before applied onto the column, aprotinin powder (final concentration 20U/ml) (Boeringer Mannheim, Mannheim, Germany) was added to plasma or culture media. Monoclonal antibody JTPl-1 (8), used in the immunoaffinity column procedure did not bind to either α_2 PI antigen in FCS or plasmin- α_2 PI complex which may form in the presence of FCS. The α_2 PI concentration was immunologically measured by the enzyme-linked immunosorbent assay as previously described (8) using an α_2 PI assay kit (α_2 PI Teijin, EIA-B, Teijin, Tokyo).

Incubation of α_2 PI purified from the serum-free culture media of Hep G2 cells with α_2 PI-deficient human plasma. α_2 PI-deficient human plasma was obtained by running plasma through a column for immunoaffinity chromatography of α_2 PI. α_2 PI purified from the serum-free culture media of Hep G2 cells was incubated at 60µg/ml with α_2 PI-deficient human plasma or 0.01M phosphate buffer, pH 7.4, containing 0.15M NaCl (PBS) plus 10% volume of 3.8% sodium citrate.

SDS-PAGE analysis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on a slab gel was carried out using a gradient separating gel of acrylamide (10% to 20%), 0.1% SDS and a stacking gel of 4% acrylamide containing 0.1% SDS according to the method of Laemmli (9). $2\mu g$ of each preparation of $\alpha_2 PI$ was applied on the well and the proteins were stained with Coomassie blue.

NH₂-terminal-sequence analysis. α_2 PIs immunopurified from three independent batches of plasma or culture media were separately combined, and 14µg of protein of each preparation were analyzed by SDS-PAGE followed by electroblotting onto polyvinylidene difluoride membrane (Immobilon) (Millipore Corp, MA) in 3-[cyclohexylamino]-1- propanesulfonic acid buffer as described previously (10). Blotted proteins were detected by staining with Coomassie Blue, and the bands were cutted and analyzed directly for the NH₂-terminal amino acid sequence by using an automatic protein sequencer (477A, Applied Biosystems, Foster City, CA).


Reagents. Unless otherwise indicated, reagents were purchased from Wako Pure Chemical Industries, Osaka, Japan.

RESULTS AND DISCUSSION

Each preparation of immunopurified $\alpha_2 PI$ was analyzed by SDS-PAGE with reduction. While plasma $\alpha_2 PI$ showed a major band of 67kDa and a minor band of 65kDa

(non-plasminogen-binding form) as reported (5), Hep G2 α_2 PI showed a broad band of 67-70kDa (Fig.1), suggesting that Hep G2 α_2 PI was larger in size than plasma α_2 PI.

NH₂-terminal-sequence analysis. Analysis of the NH₂-terminal amino acid sequence of each immunopurified protein revealed two parallel sequences (Table 1). One (Sequence A) was identical to the reported sequence for plasma α,PI starting with Asn at position 40 downstream from the NH₂-terminus of pre-α₂PI (11, 12, 13). By subtraction, a second sequence (sequence B) was identified and shown to start with the Met at position 28 downstream from the NH₂-terminus of pre-α₂PI. The results indicate the presence of two forms of α,PI; one is the previously reported form of the inhibitor with NH₂-terminal Asn (sequence A) and the other is the one with 12 more NH,-terminal residues (sequence B) which we have previously called "pro"-peptide (1). The total amounts of both forms were calculated as the means of the yields of the five first amino-acid residues of each sequence. The relative amounts of different forms of the inhibitor in plasma (sequence A: 66%. sequence B: 34%, Table 1 (a)) were well compatible with the values reported by Bangert et al. (62% vs. 38%) (2) or Enghild et al. (50-67% vs. 33-50%) (3). In contrast, in the conditioned media of Hep G2 cells containing FCS, α₂PI with the "pro"-peptide (sequence B) was a major form of the inhibitor (sequence A: 29%, sequence B: 71%, Table 1 (b)). When Hep G2 cells were cultured in serum-free media, the "pro"-peptide of 12 amino acids was completely retained at the NH₂-terminus of the secreted α₂PI (sequence B: 100%, Table 1 (c)). These results indicate that serum (FCS) present in the conditioned media was responsible for the cleavage of the "pro"-peptide. Furthermore, incubation of this "pro"-peptide retaining form of

<u>Fig. 1.</u> Analysis of α_2PI purified from plasma or the serum-free culture media of Hep G2 cells by SDS-PAGE.

Lane 1, plasma $\alpha_2 PI$ (2 μg); Lane 2, Hep G2 $\alpha_2 PI$ (2 μg). Molecular mass markers are given along the left margin. Samples were reduced with 5% 2-mercaptoethanol and applied to 10-20% gradient gel. The proteins were stained with Coomassie Blue.

Table 1. NH_2 -sequences of α_2 -PI immunopurified from human plasma and conditioned media of Hep G2 cells

		Sequence A		Sequence B	
	Cycle No.	Amino acid	pmol ¹⁾	Amino acid	pmol ¹⁾
		(a)	Plasma α,PI		
	1	Asn	28.2	Met	16.3
	2	Gln	33.3	Glu	19.1
	3	Glu	20.6	Pro	12.8
	4	Gln	25.2	Leu	18.1
	5	Val	50.9	Gly	n.d.
	6	Ser	17.2	Arg	1.1
	7	Pro	30.7	Gln	20.8
	82)	(Leu	50.9)	(Leu	50.9)
	92)	(Thr	40.8)	(Thr	40.8)
	10	Leu	37.0	Ser	16.8
	11	Leu	29.9	Gly	13.3
	12	Lys	23.9	Pro	9.3
	13	Leu	7.0	Asn	6.0
	14	Gly	12.1	Gln	22.4
		Sequence A		Sequence B	
	Cycle No.	Amino acid	pmol ¹⁾	Amino acid	pmol ¹⁾
		Hep G2 α ₂ PI			
	1	Asn	4.5	Met	16.3
	2	Gln	7.1	Glu	13.2
	3	Glu	0.2	Pro	14.1
	4	Gln	6.0	Leu	21.2
	5	Val	8.3	Gly	14.7
	6	Ser	0.5	Arg	1.4
	7	Pro	4.4	Gln	7.8
	82)	(Leu	12.2)	(Leu	12.2)
	92)	(Thr	5.1)	(Thr	5.1)
	10	Leu	2.5	Ser	1.4
	11	Leu	2.2	Gly	6.8
	12	Lys	1.2	Pro	5.6
		-			2.6
	13	Leu	2.2	Asn	3.6

 α_2 PI with α_2 PI-deficient human plasma for 3 days, induced the complete cleavage of the "pro"-peptide (sequence A: 100%, Table 1 (d)). Incubation with PBS buffer alone did not induce the cleavage at all (sequence B: 100%, Table 1 (e)). These results altogether indicate that α_2 PI is produced in liver cells and secreted as a form of α_2 PI fully retaining the

Table 1 - Continued

	Sequence B					
Cycle No.	Amino Acid	pmol ¹⁾				
(c) Hep G2 α ₂ PI in serum free media						
1	Met	23.5				
2	Glu	12.4				
3	Pro	24.2				
4	Leu	23.9				
5	Gly	13.5				
6	Arg	1.6				
7	Gln	10.0				
8	Leu	30.1				
	Sequence A					
Cycle No.	Amino Acid	pmol ¹⁾				
(d) (c) incubated with α ₂ PI-free plasma						
1	Asn	5.8				
2	Gln	6.8				
3	Glu	n.d.				
4	Gln	5.1				
5	Val	6.4				
6	Ser	1.8				
7	Pro	5.3				
8	Leu	10.5				
	Sequence B					
Cycle No.	Amino Acid	pmol ¹⁾				
(e) (c) incubated with PBS						
1	Met	12.8				
2	Glu	5.7				
3	Pro	12.6				
4	Leu	12.9				
5	Gly	13.5				
6	Arg	3.0				
7	Gln	14.6				
8	Leu	20.3				

¹⁾ Values given are the yields obtained in the individual cycle corrected for background in the previous cycles and lag in the following cycle. n.d.: not determined.

"pro"-peptide (previously called "pro"- α_2 PI (1)) and the "pro"- α_2 PI is converted to "mature" α_2 PI in the circulation by proteolytic cleavage. Proteases responsible for the cleavage of Pro12-Asn13 must be present in blood plasma. However, "pro"- α_2 PI is not a pro- α_2 PI in a true sense because processing of "pro"- α_2 PI to "mature" α_2 PI is not taking place within the cells.

²⁾ Due to identical amino acids no values could be assigned to the individual sequences.

Therefore, "pro"- α_2 PI should be regarded as mature α_2 PI, and previously reported "mature" α_2 PI is in fact a proteolytically modified form. We have shown that "pro"- α_2 PI has an inhibitory activity on plasmin similar to "mature" α_2 PI but has remarkably less capacity of cross-linking to fibrin (1). Cross-linking of α_2 PI to fibrin is physiologically important in inhibition of fibrinolysis (14), and the removal of the "pro"-peptide results in a more potent form of inhibitor on fibrinolysis. In conclusion, mature α_2 PI is a single chain protein of 464 amino acids with NH₂-terminal Met and the NH₂-terminal 12 amino acid peptide is lost in plasma during the circulation, resulting in a proteolytically modified form of α_2 PI with NH₂-terminal Asn, which possesses a more potent inhibitory activity on fibrinolysis. Identification and origin of proteases responsible for the cleavage of Pro12-Asn13 of α_2 PI are intriguing subjects for further investigation.

ACKNOWLEDGMENTS

T. Koyama and Y. Koike should be considered as equal first authors. We thank Mr. Kenji Wakabayashi for helpful discussion and Ms. Yoshie Sekine for preparation of monoclonal antibody JTPI-1.

REFERENCES

- 1. Sumi, Y., Ichikawa, Y., Nakamura, Y., Miura, O. and Aoki, N. (1989) J. Biochem. 106, 703-707.
- Bangert, K., Johnsen, A.H., Christensen, U. and Thorsen, S. (1993) Biochem. J. 291, 623-625
- 3. Enghild, J.J., Valnickova, Z., Thogersen, I.B., Pizzo, S.V. and Salvesen, G. (1993) Biochem. J. 291, 933-938.
- Saito, H., Goodnough, L.T., Knowles, B.B. and Aden, D.P. (1982) Proc. Natl. Acad. Sci. USA 79, 5684-5687.
- 5. Koyama, T., Koike, Y., Sugahara, Y. and Aoki, N. (1992) Thromb. Res. 66, 451-454.
- 6. Aoki, N., Sumi, Y., Miura, O. and Hirosawa, S. (1993) Methods. Enzymol. 223, 185-197.
- Murakami, H., Masui, H., Sato, G.H., Sueoka, N., Chow, T.P. and Kano-Sueoka T. (1982) Proc. Natl. Acad. Sci. 79, 1158-1162.
- 8. Mimuro, J., Koike, Y., Sumi, Y. and Aoki, N. (1987) Blood 69, 446-453.
- 9. Laemmli, U.K. (1970) Nature 227, 680-685.
- 10. Matsudaira, P. (1987) J. Biol. Chem. 262, 10035-10038.
- Tone, M., Kikuno, R., Kume-Iwaki, A. and Hashimoto-Gotoh, T. (1987) J. Biochem. 102, 1033-1041.
- 12. Holmes, W.E., Nelles, L., Lijnen, H.R. and Collen, D. (1987) J. Biol. Chem. 262, 1659-1664.
- 13. Hirosawa, S., Nakamura, Y., Miura, O., Sumi, Y. and Aoki, N. (1988) Proc. Natl. Acad. Sci. USA 85, 6836-6840.
- 14. Aoki, N. (1993) Thromb. Haemostas. 70, 376.